# Quality by Design Approaches to Analytical Methods

-- FDA Perspective

Yubing Tang, Ph.D. FDA/CDER/ONDQA AAPS, Washington DC October 25, 2011

#### **Outline**

- What is Quality by Design (QbD)
- Role of Analytical Methods Under QbD Paradigm
- Applying QbD Approach to Analytical Methods
  - Current status
  - Regulatory considerations
- Concluding Remarks

### What is "Quality by Design"?

A systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management

--ICH Q8 (R), Step 2

### What is "Quality" and "Quality by Design"?

#### Quality

-"Good pharmaceutical quality represents an acceptably low risk of failing to achieve the desired clinical attributes."

#### Quality by Design (QbD)

-"Means that product and process performance characteristics are scientifically designed to meet specific objectives, not merely empirically derived from performance of test batches."

-- Janet Woodcock (2004)

### Role of Analytical Methods

under QbD Paradigm

—Provide information about process understanding, process control and product quality



- •Prior *knowledge* used in initial risk assessment
- Material quality assessment
- •Perform *in-process testing* for timely process control decision
  - -- adjust process before failures occur
- Confirm product quality
  - -- quality is not determined solely by product specification
- Provide data to better understand the process and for continual improvement
- •Confirm success of process changes
  - -- can use non-traditional methods

# Analytical Method and Risk Management

#### **Risk Factor = Severity x Occurrence x Detectability**

- Severity = Effect on Patient
  - Related to safety or efficacy (CQAs)
  - Different than impact of a manufacturing failure
- Likelihood of Occurrence = Chance of Failure
  - Related to product and process knowledge and controls
  - Includes uncertainty for new processes or process changes
- Detectability = Ability to Detect a Failure
  - Appropriateness and capability of analytical method
  - Sampling considerations

# Analytical Method and Control Strategy

#### **Control Strategy Includes:**

- Process parameters and material attributes related to drug substance and drug product manufacturing
- Components, facility and equipment operating conditions
- In-process controls, finished product specification, and the associated methods and frequency of monitoring and control

### Use of Analytical Methods in Control Strategy

| Raw Material<br>Testing | <ul> <li>Specification based on product QTPP and CQA</li> <li>Effect of variability, including supplier variations, on process is understood</li> </ul>                                                                                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In process<br>Testing   | <ul> <li>Real time (at-, on-, or in-line) measurements</li> <li>Active control of process to minimize product variation</li> <li>Criteria based on multivariate process understanding</li> </ul>                                                 |
| Release<br>Testing      | <ul> <li>Quality attributes predictable from process inputs (Design Space)</li> <li>Specification is only part of the quality control strategy</li> <li>Specification based on patient needs (quality, safety, efficacy, performance)</li> </ul> |
| Stability<br>Testing    | <ul> <li>Predictive models at release minimize stability failures</li> <li>Specification set on desired product performance w/time8</li> </ul>                                                                                                   |

### Role of Process Analytical Technology (PAT)

- Provide real time information (at-, on- and in-line testing) for process control and improvement
- Non-traditional analytical techniques (e.g. NIR) have been used in these areas:
  - identification, drying, blending, assay, and content uniformity
- Need reliable reference information to establish calibration models
  - Need to maintain calibration models
  - Sampling effect on model calibration and validation

### Analytical Method and Continual Process Improvement

- Routine analysis
  - Provides data for tracking and trending
  - Quantitative results are more useful than PASS/FAIL
- Non-routine analysis
  - Evaluation of product quality on periodic basis for higher quality assurance
  - Reassessment of process or product upon process changes
  - Can use non-traditional analytical techniques that are not typically applied to routine release testing
  - Performed under firm's quality system

### QbD Approach for Analytical Methods

- ICHQ8(R2) doesn't explicitly discuss analytical method development.
- However, concepts apply:
  - Application of Science and Risk based methodology
  - Systematic approach that includes: risk assessment, defining a design space, control strategy and continual improvement to increases method robustness and understanding

### QbD Approach to Analytical Methods



### QbD Approach to Analytical Methods



- Allow continual feedback and feed-forward interactions among all steps.
- Meet and maintain method performance criteria

### Variation of Analytical Method

Many Factors can affect analytical results.

e.g. variations in instrument, sample, method, choice of model



### **Analytical Method Understanding**

- Understand how variation in input parameters affects analytical results
- Examine multivariate relationships
  - Across instrument, laboratory, analyst, sample and method parameters
- Employ mechanistic understanding
  - Based on chemical, biochemical and physical characteristics
- Incorporate prior knowledge of techniques and methods

### Analytical Method "Design Space"

- A science and risk based and multi-variate approach to evaluate effects of various factors on method performance
- Typically DoE\* (Design of Experiment) is used to find ranges for instrument operating parameters, to understand sample preparation variations and variations of method precision.
  - \* Example terminology for design space: MODR (method operable design range)
- Method performance criteria are response factors
- Can be conducted together with method validation

### Benefits of Application of QbD Approach to Analytical Methods

- Development of a robust method
- Applicable throughout the life cycle of the product
- Regulatory flexibility
  - Movements within "Design Space" are not considered a change in method

#### **Current Status**

- FDA has approved some NDA applications applying QbD approach to analytical methods (e.g. HPLC and UV)
- Regulatory flexibility has been granted for movements within the defined analytical method "Design Space"

### Regulatory Considerations

- Define intended use of the analytical method (e.g. RTRT (real time release testing) or endpoint testing)
- Not all analytical techniques are inter-changeable
  - Example: from HPLC to NIR
    - Require additional development and validation efforts
    - Submission of comparability protocols is recommended
- Need sufficient statistical power to support analytical "Design Space"
- Applicants need to clearly define terminologies
- Proposal for regulatory flexibility should consider potential risk to product quality

### **Concluding Remarks**

- Analytical techniques and methods play an essential role in QbD paradigm
- Real time release testing and non-traditional testing techniques provide valuable information for in-process control and improvement
- Regulatory flexibility is achievable by applying QbD approach, but requires
  - High degree of process, product and analytical method understanding
  - Robust quality systems
- Applicants are encouraged to discuss 'novel' QbD implementation approaches with the agency prior to submission

### Thank You!

Questions?
NewDrugCMC@fda.hhs.gov